Q & A – 1

We believe that asking Questions drives Research and Innovation. We will strive to keep questioning, to arrive at practically applicable Design that could affect meaningful change!

We interrupt the ongoing Chain of posts on E@BS to introduce our ‘Q & A’ column. Our segment on Cleantech One, left us with 2 questions. We address one of them today –

Question)

Integration with Green has positive effects on micro-climate and energy loads. However, landscaping has associated water and maintenance costs. There are also issues of insects that may not always be welcome in an urban/ strictly controlled setting like that of laboratories. What do you think about this?

Update: You could now also watch our video about ‘Building with Nature‘ in the ‘Sustainable Snippets‘ or ‘TAG Videos‘ sections. Hope you enjoy it.

Continue reading “Q & A – 1”

E@BS 2/5: Commercial – Park Royal Hotel

This is Segment 2 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Park Royal hotel

parkroyal
Park Royal Hotel, Pickering, Singapore [Image via Nylon Singapore]
Park Royal at Pickering is a 7500 sq.m. Hotel in the thick of Singapore’s Central Business District, facing a now famous Hong Lim Park. The hotel has various sustainable features (elaborated below), that lead to approximately 30 per cent (f) energy savings in operation (using a conventional building of similar scale and functions as base case). Due to these features, it has received the GreenMark Platinum rating certification from Singapore’s Building Construction Authority.

Continue reading “E@BS 2/5: Commercial – Park Royal Hotel”

E@BS 1/5: Industrial – Cleantech One

This is Segment 1 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Cleantech One

dev-cleantechone2
Cleantech One at Cleantech Park; Source: b

Cleantech One is a 37,500 sq.m. BCA GreenMark Platinum certified Industrial building. It is a Jurong Town Corporation project that is part of the larger Cleantech Park, which is a 50 hectare site for clean technology activities such as R&D, test-bedding, prototyping. Cleantech One employs state-of-the-art Active technology features, but also integrates Passive design catering to its Climatic context (Singapore). Continue reading “E@BS 1/5: Industrial – Cleantech One”

Energy @ the Building Scale (E@BS)

This post is an Introduction, that leads to a chain of articles in the coming weeks, focusing on Energy @ the Building Scale. We felt this important scale merited further mention [an extension of ‘Part 4/5: The Red System (Energy), Singapore’ – Published: 28th May 2018].  These articles are also part of our effort to explore and possibly prove that ‘Passive strategies’ for Architecture are still vital for Energy efficiency and Sustainability in today’s world.

phx-regional-office-ext
DPR’s Phoenix regional office – North and East facades; Sources: 1, 2

DPR’s Phoenix office cleverly combines passive strategies like Natural Ventilation and daylighting, with Active smart controls to create a Net Zero certified building that also acts as a Living Laboratory. Having achieved this in the harsh hot dry climate of the Sonoran desert, sprouts hope for Passive design.

Continue reading “Energy @ the Building Scale (E@BS)”

Part 5/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 5/5: How can energy be restructured to improve self sufficiency and reduce emissions?

The 4 parts of the series till now outline the existing Energy system of Singapore – its timeline, characteristics, issues. We saw a Sankey diagram in Part 3/5 detailing existing flows and exchanges, while Part 4/5 elaborated on the System Structure at 3 scales.

This final part talks of an ‘After‘ Scenario where we propose a ‘Restructuring‘ to address issues and gaps – to improve self sufficiency and reduce emissions. Continue reading “Part 5/5: The Red System (Energy), Singapore”

Part 4/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 4/5: System Structure

Welcome to Part 4/5 of our series on the Energy System of Singapore. Part 1/5 established that the system has a gap at the neighborhood scale, that it is highly centralized and the largest demand sectors are Industrial and Commercial. Part 2/5 analysed the timeline of the system from the 1800s to present day, and looked on to the future – with a focus on important policies and events, and their corresponding effects. Continue reading “Part 4/5: The Red System (Energy), Singapore”

Part 3/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 3/5: System Flows and Exchanges

Welcome to Part 3/5 of our series on the Energy System of Singapore. Part 1/5 established the objective and boundary condition of the system. It then identified the Elements, and Flows & Exchanges between them, to set relevant scales of study and understand critical functions. We found that the system has a gap at the neighborhood scale, it is highly centralized and the largest demand sectors are Industrial and Commercial. Part 2/5 went deeper into the analysis by looking at the timeline of the system from the 1800s to present day, and looking to the future. The timeline reflected important policies and events, and their corresponding effects using maps at Regional and Island scales.

Moving on from the above base, this post delves deeper into the System Flows and Exchanges. The Analysis is divided into 3 sections – Generation, Transmission, Distribution & Consumption.

System Flows and Exchanges
Energy System Flows & Exchanges Sankey Diagram; Generation, Transmission, Distribution & Consumption in detail below; Graphics: Credits below; Data Sources: 1, 2

Continue reading “Part 3/5: The Red System (Energy), Singapore”

Part 2/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 2/5: System in Time

Welcome to part 2/5 of our ongoing series, on the Energy system of Singapore. The last post established the objective of the system. We then started analysis by first establishing a boundary condition and later identifying the system’s Elements, and the Flows & Exchanges between them. This was done to set relevant scales of study and understand critical functions such as generation, transmission, consumption. We gathered that there is a global scale and 3 local scales for this system – Island, 10 km X 10 km and building. There is a gap at the neighborhood scale. We also found out that the system is highly centralized with high demand from various sectors, the largest being Industrial and Commercial.

Keeping this base work in mind, we move deeper into the analysis and understand the timeline of the system starting all the way from the 1800s to present day. We also look at future aims and targets to address present issues.

Continue reading “Part 2/5: The Red System (Energy), Singapore”

Part 1/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 1/5: What are the Objective, Boundaries, Elements, Flows & Exchanges of the Red System in Singapore?

The ‘objective‘ is established keeping in mind short and long term goals. The short term concern would be to create a resilience to Supply – Demand Balance. For the long term, development needs to be Sustainable and the System should address Environmental Issues.

For the analysis we explore the Systems Thinking approach. For this, we first establish the ‘Boundary‘ conditions for the system. This helps identify Scales and to find Gaps. If the system is reliant on factors outside the country, then there would be a Global scale. Within Singapore, we assume 4 local scales – Island, 10 km X 10 km, Neighborhood and Building.

Next, we break the system into its constituent ‘Elements‘ to understand the ‘Flows & Exchanges‘ between them. This critical understanding helps us find flaws, shortcomings, and even opportunities at every stage. These can then be addressed or exploited to bring about improvements.

purpose

Continue reading “Part 1/5: The Red System (Energy), Singapore”