E@BS 2/5: Commercial – Park Royal Hotel
This is Segment 2 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]
This is Segment 2 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]
This is Segment 1 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]
Cleantech One is a 37,500 sq.m. BCA GreenMark Platinum certified Industrial building. It is a Jurong Town Corporation project that is part of the larger Cleantech Park, which is a 50 hectare site for clean technology activities such as R&D, test-bedding, prototyping. Cleantech One employs state-of-the-art Active technology features, but also integrates Passive design catering to its Climatic context (Singapore).
Singapore has a tropical rainforest climate, with temperatures rarely straying from 29-30 degrees Celsius. Humidity stays high throughout the year and there is regular and heavy precipitation. The effect of temperature can be reduced by strategic shading measures. Cleantech One uses proper orientation, green walls, planters, sky trellis. Humidity is addressed by increasing air movement to provide potential relief to occupants as seen below. These measures reduce dependence on mechanical cooling and thus help decrease Energy costs.
Continue reading “E@BS Segment 1/7: Industrial – Cleantech One”
This is Segment 1 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]
Cleantech One is a 37,500 sq.m. BCA GreenMark Platinum certified Industrial building. It is a Jurong Town Corporation project that is part of the larger Cleantech Park, which is a 50 hectare site for clean technology activities such as R&D, test-bedding, prototyping. Cleantech One employs state-of-the-art Active technology features, but also integrates Passive design catering to its Climatic context (Singapore). Continue reading “E@BS 1/5: Industrial – Cleantech One”
This post is an Introduction, that leads to a chain of articles in the coming weeks, focusing on Energy @ the Building Scale. We felt this important scale merited further mention [an extension of ‘Part 4/5: The Red System (Energy), Singapore’ – Published: 28th May 2018]. These articles are also part of our effort to explore and possibly prove that ‘Passive strategies’ for Architecture are still vital for Energy efficiency and Sustainability in today’s world.
DPR’s Phoenix office cleverly combines passive strategies like Natural Ventilation and daylighting, with Active smart controls to create a Net Zero certified building that also acts as a Living Laboratory. Having achieved this in the harsh hot dry climate of the Sonoran desert, sprouts hope for Passive design.
This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.
Welcome to Part 4/5 of our series on the Energy System of Singapore. Part 1/5 established that the system has a gap at the neighborhood scale, that it is highly centralized and the largest demand sectors are Industrial and Commercial. Part 2/5 analysed the timeline of the system from the 1800s to present day, and looked on to the future – with a focus on important policies and events, and their corresponding effects.
Part 3/5 looked more deeply into the System’s Flows & Exchanges. Important findings were that there is a high dependence on fossil fuels mainly Petroleum Products and Natural Gas for both direct consumption and generation of electricity. Also, despite efficient gas turbines for electricity generation, there are high conversion losses of up to 40 per cent as heat. However, the transmission losses remain low. A large percentage of transportation is also powered using fossil fuels. Within sectors, the highest consumption is for air-conditioning loads. Considerable waste heat is generated from processes, adding to environmental heat and affecting micro-climate.
Moving on from this understanding, in this post we explore the System Structure in greater detail on 3 scales – Island, 10 km X 10 km and Building.
Continue reading “Part 4/5: The Red System (Energy), Singapore”
This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.
The ‘objective‘ is established keeping in mind short and long term goals. The short term concern would be to create a resilience to Supply – Demand Balance. For the long term, development needs to be Sustainable and the System should address Environmental Issues.
For the analysis we explore the Systems Thinking approach. For this, we first establish the ‘Boundary‘ conditions for the system. This helps identify Scales and to find Gaps. If the system is reliant on factors outside the country, then there would be a Global scale. Within Singapore, we assume 4 local scales – Island, 10 km X 10 km, Neighborhood and Building.
Next, we break the system into its constituent ‘Elements‘ to understand the ‘Flows & Exchanges‘ between them. This critical understanding helps us find flaws, shortcomings, and even opportunities at every stage. These can then be addressed or exploited to bring about improvements.
Continue reading “Part 1/5: The Red System (Energy), Singapore”