The LEED Experience

A series of Articles on the experience of the LEED BD+C examination.

AP
[Image via Pixabay]
This article is written by our contributing Author – Aditi Bisen.


The LEED AP BD+C (Accredited Professional – Building Design + Construction) is a useful professional credential to add to your Resume. Apart from its global recognition, it prepares individuals to handle a wide breadth of issues related to Building Design, Construction and Sustainability. Some of our writers attempted and passed the LEED AP BD+C examination with high scores (190+ out of 200). We decided to pool their understanding and resources to write a series of articles on the LEED Experience.

These articles are assuming that readers have already given the LEED Green Associate examination (This is an introductory exam, that in most cases needs to be passed before one attempts the LEED AP BD+C). We will later try and write a series on LEED Green Associate.

We will be using the following post series order for articles. Hope these are useful!


4 reasons why LEED AP BD+C was a difficult cookie to crack!

hunger-413685_1920
[Image via Pixabay]

1) 85% 

You need a minimum of 85% (170 / 200) to pass the examination!! This is a tall order.

2) Heavier load in 2 hours 

Unlike in LEED Green Associate, there are calculations involved. The questions are longer and more detailed, while you still get 2 hours to attempt 100 of them. This is taxing and requires planning and practice.

3) LEED Specific Experience 

Our writers had Architectural or Sustainability backgrounds, but almost no experience on LEED Specific Projects. Green Business Certification Inc. (GBCI) recommends that you should have prior LEED Project Experience before attempting the examination. If you have this experience, things become relatively easier, since the questions are effectively asking you how you worked on the projects.

4) Expense of resources 

The complete Reference Guide for LEED AP BD+C costs $200. Many people either didn’t want to, or could not afford to buy this Guide. This was a risk, since their preparation could be incomplete. However, they were able to achieve good scores using alternative materials provided by USGBC and other websites.

↑Go to Top


Look out for the remaining articles in coming weeks. If you have suggestions for other topics or queries related to this content, kindly let us know in the comments below.

Alternatively, you could leave us a message here.

Thank you!


About the Author

Aditi Bisen started writing for ‘The Architecture Gazette‘ in 2016. She is an Architect and LEED AP BD+C with a Masters in Integrated Sustainable Design from National University of Singapore. You could connect with her here-

LinkedIn, Facebook, Instagram, Google+

↑Go to Top

E@BS 4/5: Residential – Skyville@Dawson

This is Segment 4 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

clusters editted
Plan diagrams showing Apartments Clusters

Skyville@Dawson is a 111,106 sq.m., 48-storey1 public housing project by WOHA Architects in Queenstown, Singapore. It is one of two Build-To-Order (BTO) projects commissioned by Singapore’s Housing Development Board (HDB), as part of their “Remaking Our Heartland” initiative (the other being SkyTerrace@Dawson by SCDA Architects)4. This “housing-in-a-park” concept would show transferability in future projects and towns like – Waterway Terraces, Bidadari, Punggol Northshore, Tampines North6. It is the first housing development to be awarded the GreenMark Platinum Rating10. Skyville@Dawson’s Sustainable Design features including Passive Strategies are elaborated below-

Contents

  1. MASSING AND CONFIGURATION
    • Orientation
    • Clustering and Modules
  2. FORM, DAYLIGHT, VENTILATION
    • Unit Thickness
    • Breathability – Horizontal Air Movement
    • Breathability – Vertical Air Movement
  3. INTEGRATION WITH GREEN AND BLUE
    • Horizontal Green
    • Site Integration with Green and Blue
  4. BUILDING ENVELOPE

1) MASSING AND CONFIGURATION

Orientation

(i) The Building is placed with its longer facades facing the North-South9 directions. This reduces exposure to the East and West directions, that are normally difficult to shade.

shadow studies
Shading Studies for Skyville@Dawson

Clustering and Modules

(i) 8 apartments in plan(as seen in Plan diagrams above), surround a courtyard. This cluster is repeated 2 more times, to create 3 sets of apartments enclosing courtyards. This configuration also provides self-shading, especially from low angle rays from the East and West directions (as seen in the Shadow Studies above).

(ii) In Elevation, 12 clusters form villages, each comprising of 80 apartments.

villages with border
Perspective diagrams showing Apartment Villages

(iii) The apartment layouts are column and beam free4. This provides the possibility of 3 layouts for residents – reducing wastage, allowing flexibility for multiple functions, family size and the future.

(iv) For standardization, efficiency and to reduce wastage, only 5 window types2  have been used in the entire development.

(v) The design uses precast and prefabricated10 elements to avoid errors and reduce wastage. This feature could also contribute towards LEED BD+C v4 CreditConstruction and Demolition waste management. 

 ↑ Go to Contents ↑


2) FORM, DAYLIGHT, VENTILATION

Unit Thickness

(i) The individual apartments are approximately 11 meters across in width, thus applying the Unit Thick Principle. Apartments also have openings in all directions. They are thus naturally ventilated and day lit, reducing artificial cooling and lighting costs.

unit thick
Plan diagram showing Unit Thick apartment blocks

Breathability – Horizontal Air Movement

(i) The clustering arrangement around courtyards, and the repetition of this module linearly, enables horizontal air circulation.

hori air movt
Plan diagram showing Horizontal air movement through courtyards and building block gaps

(ii) Common areas (Lobbies, Corridors, Staircases) and Apartments are naturally ventilated. Many units have not installed Air-conditioning3.

Breathability – Vertical Air Movement

(i) With minimal obstructions and the creation of Canyon like spaces, air moves vertically through the towers – accentuating the breezy atmosphere. The interaction of this air with greenery from sky gardens at intermediate levels, cools this air through evapotranspiration.

vertical air movt
Section diagram showing Vertical air movement through the towers

 ↑ Go to Contents ↑


3) INTEGRATION WITH GREEN AND BLUE

Horizontal Green

(i) ‘Sky Terraces’7 are located every 12 floors. These are designed as community spaces, where people can collect to interact with neighbors or simply visit to relax and enjoy the lush greenery.

hori greenery
Sky Gardens and Rooftop Garden

(ii) A ‘Sky Park’7 on the roof has planters, hedges, and beautiful city views. Photovoltaics3 power the common area lighting.

Site Integration with Green and Blue

(i) A 150 m long bio-swale (gently sloping ditch with specific plants) filters and treats site stormwater before discharging it into the city drainage system5. Another example of a bio-swale – water treatment and recycling loop can be seen in Kampung Admirality.

site green blue
Site Plan diagram showing location of Parks, Plaza and Bio-swale

(ii) The site is an ungated3 community, with Public Parks and Amenities that cater to the residents as well as the general public.

 ↑ Go to Contents ↑


4) BUILDING ENVELOPE

(i) Monsoon windows8 on the facade can be kept open during rains, thus providing cool breeze without wind-blown rain entering the home. A similar more advanced Monsoon Window design is utilized in another high-rise residential building – 1 Moulmein Rise, Singapore.

(ii) The walls on the facade have horizontal and vertical sunbreakers5. Balconies or horizontal ledges9 are used to provide shading for openings.

(iii) Double-height verandas10 on the ground level provide pleasant public spaces overlooking the parks.

 ↑ Go to Contents ↑


That’s all for today! We hope you enjoyed this segment. As always, we would love to hear your thoughts, suggestions, queries, opinions.

Thank you!

See you next week.


Credits:
Graphics : Selected graphics are produced as part of a team project for M.Sc. Integrated Sustainable Design at National University of Singapore (Building Semester – Stage 1 – Complex Living Systems). Group Members – Gajender Kumar Sharma, Aditi Bisen, Huang Hongbo, Zhao Yanming
Text: Aditi Bisen


References/ Additional Reading:

  1. CTBUH. SkyVille @ Dawson – The Skyscraper Center. http://www.skyscrapercenter.com/building/skyville-dawson/14117. Accessed July 18, 2018.
  2. Furuto A. SkyVille @ Dawson / WOHA. ArchDaily. https://www.archdaily.com/215386/skyville-dawson-woha. Published 2012. Accessed July 18, 2018.
  3. ArchDaily. SkyVille / WOHA. https://www.archdaily.com/800832/skyville-woha. Published 2017. Accessed July 18, 2018.
  4. HISTORYSG. SkyVille@Dawson and SkyTerrace@Dawson are launched – Singapore History. http://eresources.nlb.gov.sg/history/events/734a75df-6ece-410f-a1f5-3d0453daf2fe. Published 2015. Accessed July 18, 2018.
  5. Australian Design Review. An exploration in affordable housing: Skyville @ Dawson. https://www.australiandesignreview.com/architecture/an-exploration-in-affordable-housing-skyville-dawson/. Published 2016. Accessed July 19, 2018.
  6. Zachariah NA. Dawson’s SkyVille and SkyTerrace projects are raising the bar for stylish public housing. The Straits Times. https://www.straitstimes.com/lifestyle/home-design/dawsons-skyville-and-skyterrace-projects-are-raising-the-bar-for-stylish. Published 2015. Accessed July 19, 2018.
  7. Willis C. The Skyscraper Museum: GARDEN CITY | MEGA CITY: WOHA rethinks cities for the age of global warming. http://skyscraper.org/EXHIBITIONS/WOHA/skyville.php. Accessed July 24, 2018.
  8. Pearson CA. SkyVille@Dawson|Gardens in the Sky. Architectural Record. https://www.architecturalrecord.com/articles/7925-skyvilledawson. Published 2013. Accessed July 24, 2018.
  9. BCA Singapore. BCA GreenMark Buildings Directory | Skyville @ Dawson. https://www.bca.gov.sg/green_mark/KnowledgeResources/BuildingDirectoryDetail.aspx?id=255. Accessed July 26, 2018.
  10. world-architects. SkyVille @ Dawson WOHA. https://www.world-architects.com/en/woha-singapore/project/skyville-dawson. Accessed July 26, 2018.

Addressing East and West Facades

Sustainable Snippets

These faces of the building are difficult to shade, as they receive low angle rays from the rising and setting sun. Common shading features such as horizontal projections, usually fail in such situations. Our 3 case-studies explain methods to address these tricky areas of the building.

ss1
Addressing East, West Facades; Graphics: Credits below
  1. Park Royal – The East, West facades are shaded using self-shading, achieved due to the E-shape projections from the Plan.
  2. CapitaGreen – Of all the vertical green on the facade, larger amount of greenery is provided on the East, West facades to shade them.
  3. Cleantech One – Sky gardens and planters on these facades help cool the labs and create pleasant breakout spaces.

Credits:
Graphics : All graphics are produced as part of a team project for M.Sc. Integrated Sustainable Design at National University of Singapore (Building Semester – Stage 1 – Complex Living Systems). Group Members – Gajender Kumar Sharma, Aditi Bisen, Huang Hongbo, Zhao Yanming
Text: Aditi Bisen

E@BS 3/5: Commercial – CapitaGreen

This is Segment 3 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

CapitaGreen

cover capita
CapitaGreen in the Central Business District of Singapore [Image via GreenA Consultants, Singapore]
CapitaGreen is a 82,000 sq.m. GreenMark Platinum building. It is a 43-floor skyscraper in the Central Business District of Singapore designed by Architect – Toyo Ito (2). It is at less than 10-minutes walk, South-East from Park Royal, Pickering – our previous project under study. The Skyscraper has multiple sustainable features as elaborated below; which lead to energy savings of around 4.5 GWh /year (1).

Continue reading “E@BS 3/5: Commercial – CapitaGreen”

E@BS Segment 2/7: Commercial – Park Royal Hotel

This is Segment 2 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Park Royal hotel

parkroyal
Park Royal Hotel, Pickering, Singapore; Source: b

Park Royal at Pickering is a 7500 sq.m. Hotel in the thick of Singapore’s Central Business District, facing a now famous Hong Lim Park. The hotel has various sustainable features (elaborated below), that lead to approximately 30 per cent (f) energy savings in operation (using a conventional building of similar scale and functions as base case). Due to these features, it has received the GreenMark Platinum rating certification from Singapore’s Building Construction Authority.

 

1) BREATHABILITY

  • Horizontal air movement
  1. Despite being a commercial project, the property shows generosity, by providing a large public interface on the ground floor. This enables Horizontal air flow, thus improving thermal comfort for the area.
  2. The corridors, lobbies and common wash rooms are all naturally ventilated with fresh air (c).
  3. The entrance to the above-ground car park is concealed with plants and is also naturally ventilated.
hori air movement
Plan and section diagrams showing horizontal air movement through Public space; Graphics: Credits below

This natural ventilation in humid Singapore conditions, provides relief to occupants. The breeze, coupled with shading measures, can improve thermal comfort conditions; thus reducing the need for artificial mechanical cooling.

366757f81eaa6f3b3228e2157b040bb9
Public interface on Ground Floor enabling Horizontal air movement; Source: a

Continue reading “E@BS Segment 2/7: Commercial – Park Royal Hotel”

E@BS 2/5: Commercial – Park Royal Hotel

This is Segment 2 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Park Royal hotel

parkroyal
Park Royal Hotel, Pickering, Singapore [Image via Nylon Singapore]
Park Royal at Pickering is a 7500 sq.m. Hotel in the thick of Singapore’s Central Business District, facing a now famous Hong Lim Park. The hotel has various sustainable features (elaborated below), that lead to approximately 30 per cent (f) energy savings in operation (using a conventional building of similar scale and functions as base case). Due to these features, it has received the GreenMark Platinum rating certification from Singapore’s Building Construction Authority.

Continue reading “E@BS 2/5: Commercial – Park Royal Hotel”

E@BS Segment 1/7: Industrial – Cleantech One

This is Segment 1 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Cleantech One

dev-cleantechone2
Cleantech One at Cleantech Park; Source: b

Cleantech One is a 37,500 sq.m. BCA GreenMark Platinum certified Industrial building. It is a Jurong Town Corporation project that is part of the larger Cleantech Park, which is a 50 hectare site for clean technology activities such as R&D, test-bedding, prototyping. Cleantech One employs state-of-the-art Active technology features, but also integrates Passive design catering to its Climatic context (Singapore).

Singapore has a tropical rainforest climate, with temperatures rarely straying from 29-30 degrees Celsius. Humidity stays high throughout the year and there is regular and heavy precipitation. The effect of temperature can be reduced by strategic shading measures. Cleantech One uses proper orientation, green walls, planters, sky trellis. Humidity is addressed by increasing air movement to provide potential relief to occupants as seen below. These measures reduce dependence on mechanical cooling and thus help decrease Energy costs.

Continue reading “E@BS Segment 1/7: Industrial – Cleantech One”

E@BS 1/5: Industrial – Cleantech One

This is Segment 1 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]

Cleantech One

dev-cleantechone2
Cleantech One at Cleantech Park; Source: b

Cleantech One is a 37,500 sq.m. BCA GreenMark Platinum certified Industrial building. It is a Jurong Town Corporation project that is part of the larger Cleantech Park, which is a 50 hectare site for clean technology activities such as R&D, test-bedding, prototyping. Cleantech One employs state-of-the-art Active technology features, but also integrates Passive design catering to its Climatic context (Singapore). Continue reading “E@BS 1/5: Industrial – Cleantech One”

Energy @ the Building Scale (E@BS)

This post is an Introduction, that leads to a chain of articles in the coming weeks, focusing on Energy @ the Building Scale. We felt this important scale merited further mention [an extension of ‘Part 4/5: The Red System (Energy), Singapore’ – Published: 28th May 2018].  These articles are also part of our effort to explore and possibly prove that ‘Passive strategies’ for Architecture are still vital for Energy efficiency and Sustainability in today’s world.

phx-regional-office-ext
DPR’s Phoenix regional office – North and East facades; Sources: 1, 2

DPR’s Phoenix office cleverly combines passive strategies like Natural Ventilation and daylighting, with Active smart controls to create a Net Zero certified building that also acts as a Living Laboratory. Having achieved this in the harsh hot dry climate of the Sonoran desert, sprouts hope for Passive design.

Continue reading “Energy @ the Building Scale (E@BS)”

Part 5/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 5/5: How can energy be restructured to improve self sufficiency and reduce emissions?

The 4 parts of the series till now outline the existing Energy system of Singapore – its timeline, characteristics, issues. We saw a Sankey diagram in Part 3/5 detailing existing flows and exchanges, while Part 4/5 elaborated on the System Structure at 3 scales.

This final part talks of an ‘After‘ Scenario where we propose a ‘Restructuring‘ to address issues and gaps – to improve self sufficiency and reduce emissions.

The issues at hand which create possible vulnerabilities are –

  • a Gap at the neighborhood scale
  • a largely Centralized system
  • large consumption for air-conditioning loads
  • high dependence on imported fossil fuels

Continue reading “Part 5/5: The Red System (Energy), Singapore”

Part 4/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 4/5: System Structure

Welcome to Part 4/5 of our series on the Energy System of Singapore. Part 1/5 established that the system has a gap at the neighborhood scale, that it is highly centralized and the largest demand sectors are Industrial and Commercial. Part 2/5 analysed the timeline of the system from the 1800s to present day, and looked on to the future – with a focus on important policies and events, and their corresponding effects.

Part 3/5 looked more deeply into the System’s Flows & Exchanges. Important findings were that there is a high dependence on fossil fuels mainly Petroleum Products and Natural Gas for both direct consumption and generation of electricity. Also, despite efficient gas turbines for electricity generation, there are high conversion losses of up to 40 per cent as heat. However, the transmission losses remain low. A large percentage of transportation is also powered using fossil fuels. Within sectors, the highest consumption is for air-conditioning loads. Considerable waste heat is generated from processes, adding to environmental heat and affecting micro-climate.

Moving on from this understanding, in this post we explore the System Structure in greater detail on 3 scales – Island, 10 km X 10 km and Building.

System Structure 1
System Structure on Regional and Island Scale; Graphics: Credits below

Continue reading “Part 4/5: The Red System (Energy), Singapore”

Part 3/5: The Red System (Energy), Singapore

This is part of a series of posts based on scripts, written for class presentations during our Masters in Integrated Sustainable Design at National University of Singapore.
The class had to analyse various complex systems in Singapore, as a precursor to the Design problem in Studio. The systems included are – Red (energy), Blue (Water), Green I (Biodiversity), Green II (Food) and Grey (Public Space).
The following posts elaborate on the Red System.

Part 3/5: System Flows and Exchanges

Welcome to Part 3/5 of our series on the Energy System of Singapore. Part 1/5 established the objective and boundary condition of the system. It then identified the Elements, and Flows & Exchanges between them, to set relevant scales of study and understand critical functions. We found that the system has a gap at the neighborhood scale, it is highly centralized and the largest demand sectors are Industrial and Commercial. Part 2/5 went deeper into the analysis by looking at the timeline of the system from the 1800s to present day, and looking to the future. The timeline reflected important policies and events, and their corresponding effects using maps at Regional and Island scales.

Moving on from the above base, this post delves deeper into the System Flows and Exchanges. The Analysis is divided into 3 sections – Generation, Transmission, Distribution & Consumption.

System Flows and Exchanges
Energy System Flows & Exchanges Sankey Diagram; Generation, Transmission, Distribution & Consumption in detail below; Graphics: Credits below; Data Sources: 1, 2

Continue reading “Part 3/5: The Red System (Energy), Singapore”

%d bloggers like this: