Following our case study Article and Video – Drip Irrigation in the City, we received expert response from a Ranchi, India based Civil Engineer, with almost 40 years’ experience.
Based on this discussion, and feedback, this week’s article outlines possible issues that may arise with use of this technology in Residential colonies.
In Case study 1 (original Case Study -Residence A), the Balcony A in question lies adjacent to a plumbing Shaft A, containing supply water pipes to the house. Thus, the plumber can easily provide a water connection (Source for the Drip Irrigation System) from this shaft to the balcony.
However, in Case Study 2 (Alternative
Scenario – Residence B),
the positioning of shafts is different. The Shaft B in the house (Residence B) is placed far from the Balcony. This makes it difficult to provide a water source for the Drip
System.
The Shaft C, which offers a more direct route to Balcony B, contains water supply pipes belonging to another flat (Residence C). Thus, the plumber would be unable to draw a connection from this shaft.
Solution:
Such technology could be Integrated at earlier Design stages in future Residential constructions. Thus, shaft and water supply lines could be planned accordingly, for convenience to Residents and to save Water.
We look forward to more such expert opinions, feedback, comments. These help us move towards further Sustainable Solutions, for our evolving Built and Urban Environments.
An Efficient technique largely used in Greenhouses and Agriculture, could be ‘Adapted’ to serve ‘Emerging’ City Needs – Assist Aging Populations and Address Water Shortages.
Looking at a City Case Study, Details, Pros and Cons.
This week we document Drip Irrigation used for balcony garden irrigation. The Case study is a 1000 sqft. flat dwelling, housing 2 aging persons. Having a large ground garden, while living in a metro city is a luxury most cannot afford. So, many people nurture beautiful balcony gardens. Often aging parents or grandparents may be living alone and looking after these spaces. They may or may not have access to domestic help for daily watering of plants. New developments are often also plagued with water shortages. Tiled balconies can become messy and slippery with pipe or bucket watering, thus posing a danger to aged people living alone.
We thus explore this technology, used in our case study, that may be able to address the above issues. It could remove unnecessary risk and make life a little more convenient for aged people.
The Nuts and Bolts
Looking at 3 main details –
1) Origin – Tap, Tap Connector, Elbow Connector, Main Pipe
2) Route – Main Pipe, Elbow/ Tee/ Straight Connectors
3) Destination – Main Pipe, Feeder Pipe, Stake/Anchor to hold Feeder Pipes in the soil of pots, Drip Emitter
Some advanced kits also include automatic timers for scheduling the watering cycle.
Cost
The whole kit could cost between ₹ 300 to above ₹ 7000 (around $4 – $100 depending on company, number of plants)
Pros and Cons
The Pros and Cons are based on feedback for the technology by the owners.
Note: The products utilized by the owners in the Case Study are by a company called CINAGRO™. We are spreading information about the ‘adaptive’ use of this technology to solve important city issues. We however, are NOT endorsing the products/ company in question. You could search for Drip Irrigation Garden online. There are various companies that sell/ install such products.
Hope these details help you make decisions for your homes and the homes of other aging people with similar requirements.
Have you used a similar technology in your projects? Tell us about your experience. Did you face any other issues than the ones described above?
Do you think this ‘Adaptation’ can help address Emerging city needs?
“The harmony of natural law reveals an intelligence of such superiority that, compared with it, all the systematic thinking and acting of human beings is an utterly insignificant reflection.”
-Albert Einstein
Contemplating this powerful quote by Einstein could send chills down your spine. Our insignificance in the face of Nature’s power, begs us to show more humility. Nature doesn’t fear our walls, and everyday Climate related calamities should teach us better. It is ultimately in all of our favor, to Build with Nature, instead of withstanding it!
Following this chain of thought, today we look at Integration of Built with Water. Such a synergy with Water has positive effects on Micro-Climate and Energy Loads.
However, insects can be attracted to areas of vegetation and water. While all insects are not harmful they may not always be welcome in an urban setting.
Let’s look at some ways to address this issue-
1) Deeper water could prevent mosquitoes, since larvae prefer shallow water bodies of less than 2 feet
2) Natural pest Predators like Dragonflies are garden heroes
3) Select Plant Species that repel pests – Lavender, Citronella Grass, Marigolds
This is Segment 4 of our Chain of posts focused on ‘Energy @ the Building Scale’.
[Extension of Part 4/5: The Red System (Energy), Singapore – Published: 28th May 2018]
Plan diagrams showing Apartments Clusters
Skyville@Dawson is a 111,106 sq.m., 48-storey1 public housing project by WOHA Architects in Queenstown, Singapore. It is one of two Build-To-Order (BTO) projects commissioned by Singapore’s Housing Development Board (HDB), as part of their “Remaking Our Heartland” initiative (the other being SkyTerrace@Dawson by SCDA Architects)4. This “housing-in-a-park” concept would show transferability in future projects and towns like – Waterway Terraces, Bidadari, Punggol Northshore, Tampines North6. It is the first housing development to be awarded the GreenMark Platinum Rating10. Skyville@Dawson’s Sustainable Design features including Passive Strategies are elaborated below-
(i) The Building is placed with its longer facades facing the North-South9 directions. This reduces exposure to the East and West directions, that are normally difficult to shade.
Shading Studies for Skyville@Dawson
Clustering and Modules
(i) 8 apartments in plan(as seen in Plan diagrams above), surround a courtyard. This cluster is repeated 2 more times, to create 3 sets of apartments enclosing courtyards. This configuration also provides self-shading, especially from low angle rays from the East and West directions (as seen in the Shadow Studies above).
(ii) In Elevation, 12 clusters form villages, each comprising of 80 apartments.
Perspective diagrams showing Apartment Villages
(iii) The apartment layouts are column and beam free4. This provides the possibility of 3 layouts for residents – reducing wastage, allowing flexibility for multiple functions, family size and the future.
(iv) For standardization, efficiency and to reduce wastage, only 5 window types2 have been used in the entire development.
(v) The design uses precast and prefabricated10 elements to avoid errors and reduce wastage. This feature could also contribute towards LEED BD+C v4 Credit – Construction and Demolition waste management.
(i) The individual apartments are approximately 11 meters across in width, thus applying the Unit Thick Principle. Apartments also have openings in all directions. They are thus naturally ventilated and day lit, reducing artificial cooling and lighting costs.
Plan diagram showing Unit Thick apartment blocks
Breathability – Horizontal Air Movement
(i) The clustering arrangement around courtyards, and the repetition of this module linearly, enables horizontal air circulation.
Plan diagram showing Horizontal air movement through courtyards and building block gaps
(ii) Common areas (Lobbies, Corridors, Staircases) and Apartments are naturally ventilated. Many units have not installed Air-conditioning3.
Breathability – Vertical Air Movement
(i) With minimal obstructions and the creation of Canyon like spaces, air moves vertically through the towers – accentuating the breezy atmosphere. The interaction of this air with greenery from sky gardens at intermediate levels, cools this air through evapotranspiration.
Section diagram showing Vertical air movement through the towers
(i) ‘Sky Terraces’7 are located every 12 floors. These are designed as community spaces, where people can collect to interact with neighbors or simply visit to relax and enjoy the lush greenery.
Sky Gardens and Rooftop Garden
(ii) A ‘Sky Park’7 on the roof has planters, hedges, and beautiful city views. Photovoltaics3 power the common area lighting.
Site Integration with Green and Blue
(i) A 150 m long bio-swale (gently sloping ditch with specific plants) filters and treats site stormwater before discharging it into the city drainage system5. Another example of a bio-swale – water treatment and recycling loop can be seen in Kampung Admirality.
Site Plan diagram showing location of Parks, Plaza and Bio-swale
(ii) The site is an ungated3 community, with Public Parks and Amenities that cater to the residents as well as the general public.
(i) Monsoon windows8 on the facade can be kept open during rains, thus providing cool breeze without wind-blown rain entering the home. A similar more advanced Monsoon Window design is utilized in another high-rise residential building – 1 Moulmein Rise, Singapore.
(ii) The walls on the facade have horizontal and vertical sunbreakers5. Balconies or horizontal ledges9 are used to provide shading for openings.
(iii) Double-height verandas10 on the ground level provide pleasant public spaces overlooking the parks.
That’s all for today! We hope you enjoyed this segment. As always, we would love to hear your thoughts, suggestions, queries, opinions.
Thank you!
See you next week.
Credits: Graphics : Selected graphics are produced as part of a team project for M.Sc. Integrated Sustainable Design at National University of Singapore (Building Semester – Stage 1 – Complex Living Systems). Group Members – Gajender Kumar Sharma, Aditi Bisen, Huang Hongbo, Zhao Yanming Text: Aditi Bisen
We interrupt the ongoing Chain of posts on E@BS to introduce our ‘Q & A’ column.
Our segment on Cleantech One [published: June 18, 2018] left us with 2 questions. We address one of them today –
Q) Integration with Green has positive effects on micro-climate and energy loads. However, landscaping has associated water and maintenance costs. There are also issues of insects that may not always be welcome in an urban/ strictly controlled setting like that of laboratories. What do you think about this?
A) Water and Maintenance Costs
Water use can be optimized and maintenance can be reduced by adopting certain simple measures. Some of the following have been adopted by our case-studies, specially Park Royal Hotel [published June 25th, 2018]. These measures also help buildings gain points for LEED certification categories – Water Efficiency, Sustainable Sites.
Reduction of Need (Water and Maintenance)
Selection of Plant Species – Native plants that are local to the site are adapted best to existing conditions. They are thus hardy and require little to no maintenance. Many species can also survive, without any external irrigation.
Rainwater Harvesting – Storage, treatment an recycling of rainwater for landscape irrigation helps reduce the requirement for Potable water use. In Park Royal, rainwater from upper floors, irrigates plants on lower floors by gravity.
Supplemental measures
Non – Potable water – If additional water is needed, then non-potable water recycled from site or outside, can be utilized. For example in Park Royal Hotel, recycled wastewater called NEWater is used for additional irrigation needs.
Drip Irrigation – If supplemental irrigation is required, then drip irrigation is an extremely efficient option. Compared to overhead spray irrigation (efficiency 50-70 per cent), drip irrigation can provide water use efficiencies of greater than 90 per cent. There are multiple other benefits of this type of irrigation which make it an indisputable choice. Various small villages, farmers and projects in India are benefiting from this technology. Some benefits include –
Efficiency – There is reduction of evaporative losses and as water is delivered through pipes, to the plants as they need it.
Yield – Farmers in the states of Andhra Pradesh (Anantapur district, Chilli Crop) and Tamil Nadu (Tuberose flowers) in India for example, have seen crop yields double by adopting drip irrigation. This is possible since water along with fertilisers or required chemicals can be delivered to the plants ina precise manner, thus improving plant health.
Weeds – Weeds are reduced since the area between plants is not irrigated.
Runoff – Runoff , Erosion and related Pollution is prevented.
Sensors – Landscape areas could have rain sensors, that signal to turn off irrigation, when a minimum level of rainfall is achieved (d).
B) Insects
Insects or pests can be attracted to areas of vegetation and water. While all insects are not harmful, and many are extremely helpful and necessary for the ecosystem; they may not always be welcome in an urban/ strictly controlled setting like that of a laboratory. Let’s look at some ways to deal with this issue –
Pests around water features
Pests specially mosquitoes can be a dangerous problem around water features. Some steps that could be taken to guard against this are-
Design water features deeper than 2 feet, since larvae prefer shallow water bodies.
Use fountains or waterfalls, which increase circulation of water and reduce stagnant water.
Natural predators like dragonflies and back-swimmers help get rid of mosquito larvae. Care should be taken to avoid broad spectrum insecticides, which could kill these helpful creatures.
Remove organic debris, which is food for larvae – Pond Skimmers are useful contraptions for larger water bodies. For smaller water features, use pond skimmer nets. Pond spikes are good for preventing algal blooms.
Pest repellent Plant species
Another simple way is to choose plant species that naturally repel certain pests. This helps avoid the use of harmful insecticides and pesticides, that have other dire consequences. Some low maintenance species to choose from are –
Lavender – This plant has a lovely fragrance for humans. However, it repels mosquitoes, insects and smaller animals like rabbits. It is a tough drought-resistant plant and does well in warmer climates.
Citronella Grass – It has a lemony scent and is a common ingredient for mosquito repellents. It is a low maintainence plant and only requires a sunny spot in the ground in warm climates.
Marigolds – Their smell deters not only mosquitoes, but also aphids, whiteflies, squash bugs, thrips, tomato hornworms, mexican bean beetles. They flower annually and are easily grown in pots.
This post is an Introduction, that leads to a chain of articles in the coming weeks, focusing on Energy @ the Building Scale. We felt this important scale merited further mention [an extension of ‘Part 4/5: The Red System (Energy), Singapore’ – Published: 28th May 2018]. These articles are also part of our effort to explore and possibly prove that ‘Passive strategies’ for Architecture are still vital for Energy efficiency and Sustainability in today’s world.
DPR’s Phoenix regional office – North and East facades; Sources: 1, 2
DPR’s Phoenix office cleverly combines passive strategies like Natural Ventilation and daylighting, with Active smart controls to create a Net Zero certified building that also acts as a Living Laboratory. Having achieved this in the harsh hot dry climate of the Sonoran desert, sprouts hope for Passive design.
I sit in my living room looking at the gallons of water pouring down my window, courtesy the Great Indian Monsoons. I can’t help but feel sad seeing such a colossal waste of a precious resource – fresh water. This emotion is heightened by two reasons.